
Vegetation data access and taxonomic harmonization

version 0.9.12

Florian Jansen

November 25, 2024

Abstract

An example session to show functionality and usage of R library vegdata.
After installation of vegdata you can invoke this PDF with

vignette(’vegdata’)

1 Preliminary notes

Some vegdata functions expect an installation, or more precisely the main directory structure, of the vegeta-
tion database program Turboveg for Windows (see ’http://www.synbiosys.alterra.nl/turboveg/’ and
Hennekens and Schaminee [2001]. If the package can not find a Turboveg installation it will use the directory
within the package installation path. If you want to use function taxval for taxonomic harmonization you
will need to have GermanSL or an equally structured reference list. If you do not specify any, the most
recent version of GermanSL will be used and if it can not be found within the specified path, it will be
downloaded from https://germansl.infinitenature.org/GermanSL/latest/GermanSL.zip.

Turboveg uses dBase database format for storage. The package tries to deal with the limitations of that
format but it is essential, that you use ”Database -¿ Reindex” in Turboveg every time you delete something
in your Turboveg database. Otherwise it will not be deleted immediately in the dBase file, instead it is only
marked for deletion, i.e. it is still there when you access this file with R and will not be recognized as deleted
until you reindex your Turboveg database.

2 Provided functionality

2.1 Taxonomic harmonisation

One of the most important steps in using vegetation data (from different sources) for statistical analysis is
to take care about the taxonomic content of the names existing in the database. That is, to make sure, that
exactly one (correct and valid) name defines one biological entity. Most researchers remember to convert
synonyms to valid names but in many cases the care about e.g. monotypic subspecies or ambiguous taxonomic
levels is lacking [Jansen and Dengler, 2010]. The package offers the function taxval with different options for
the adjustment of synonyms, monotypic taxa, taxonomic levels, members of aggregates and undetermined
species.

2.2 Database access

vegdata (will) provide direct access to different vegetation database formats:

Turboveg is a desktop program, written in VisualBasic. It provides basic functions to enter, import,
maintain and export vegetation data. From the 2 000 000 vegetation plots registered in https:

//www.GIVD.info approximately 1.5 million are stored in Turboveg databases format.

1

'http://www.synbiosys.alterra.nl/turboveg/'
https://germansl.infinitenature.org/GermanSL/latest/GermanSL.zip
https://www.GIVD.info
https://www.GIVD.info

vegetweb is the German national vegetation database. vegetweb is accessible at https://www.vegetweb.
de. Data can be selected, open access data can be downloaded directly, other data after clearance from
the owners.

VegX is an international exchange standard. An R package with a S4 implementation of the standard is in
development

2.3 Cover standardization

Turboveg provides different abundance codes and all kinds of user defined cover codes can easily be added.
For vegetation analysis a unique species performance platform is needed which will in most cases be the
percentage cover of the observed plot area. Therefore, for every abundance code class the mean cover
percentage is defined in Turboveg. Since different scales can occur in a database and the storage format of
the code table in Turboveg is somewhat strange, the function tv.coverperc provides automatic conversion
for convenience.

2.4 Layer aggregation

The most frequently used sample unit in vegetation science is a plot based vegetation relevé [Dengler et al.,
2011]. A Braun-Blanquet relevé is a sample of names and coverage (abundance) of species in a specified
area (usually between 1 and 1000 m2) at a specific time. It contains (at least is intended to contain) a
complete list of photo-autotrophic plants (or a defined subset) in that plot. This information can be stored
in a three-column list of relevé ID, Taxon ID and performance measure (e.g. cover code).

Often additional information about the kind of occurrence is wanted. In Turboveg one additional column
for the most widespread attribute is included by default: growth height classes. E.g. in a forest it is of interest,
if a woody species reaches full height (tree layer) or occurs only as a small individual (herb layer). Other
attributes like micro location (hummock or depression, rock or dead wood), development stage (juvenile or
not, flowering status etc.) or the month of survey in a multi-seasonal survey could also be of interest and
can be added in Turboveg. For analysis you may want to differentiate species with different species-plot
attributes (e.g. growing in different layers). Function tv.veg provides possibilities for species-plot attribute
handling.

2.5 Vegetation matrix

Turboveg stores relevés as a dataframe of occurrences (s. below) but almost all functions and programs
for vegetation analyses use plot-species cross-tables with a 0 value for non-occurrence = observed absence.
Function tv.veg inflates the Turboveg list to matrix format with plots in rows and species in columns.
Column names can be either species numbers, species letter-codes (default) or full names (with underscores
instead of blanks to match the R naming conventions).

3 Preparations

The best way to introduce the functionalities of the package is a session with example code.
We load the library as usual into our R environment.

library(vegdata)

Several functions of this package use the directory structure of Turboveg. The first time such a function
is called, the internal function tv.home tries to find your Turboveg installation path. Depending on whether
you have Turboveg installed on your computer or not, it will give you a message (and an invisible return)
about the Turboveg installation path or the path to the Turboveg directory structure of package vegdata.

tv_home <- tv.home()

If you want to change this, declare manually by setting option ”tv home”:

2

https://www.vegetweb.de
https://www.vegetweb.de

options(tv_home="path_to_your_Turboveg_root_directory")

options(tv_home="/home/jansen/aGitRepos/vegdata/vegdata/inst/tvdata/")

4 Service functions

tv.db()

[1] "./elbaue" "./taxatest"

will give you a list of available Turboveg database names (directories within the Turboveg Data directory).

tv.refl()

[1] "GermanSL 1.5"

GermanSL is the default Taxonomic reference list in package vegdata. However, whenever you use a
Turboveg database name in a function, the Reference list will be read from the database configuration file
”tvwin.set” if possible. If you want to change the default reference list:

tv.refl('your_preferred_list')

will change option tv.refl which will be used whenever db or refl is not given.
Package vegdata contains several service functions to query the taxonomic information contained in the

reference list.

tax('Quercus robur')

Reference list used: GermanSL 1.5

Taxonomic reference list file GermanSL 1.5 does not exist. Search path was /tmp/RtmpXmCWT6/Species/GermanSL 1.5/species.dbf

Will try to downlaod reflist GermanSL 1.5 (species.dbf) ...

Registered S3 method overwritten by ’httr’:

method from

print.cache info hoardr

Downloading remote dataset.

Option "tv home" is /tmp/RtmpXmCWT6

TaxonUsageID LETTERCODE TaxonName NameAuthor SYNONYM

2882 4685 QRCSROB Quercus robur L. FALSE

7378 23467 QRCSPET Quercus robur var. petraea Matt. TRUE

9298 29751 QRCSR-R Quercus robur subsp. robur <NA> FALSE

TaxonConceptID TaxonConcept VernacularName

2882 4685 Quercus robur Stiel-Eiche

7378 4680 Quercus petraea <NA>

9298 29751 Quercus robur subsp. robur Eiche (Unterart), Stiel-

TaxonRank GRUPPE IsChildTaxonOfID IsChildTaxonOf NACHWEIS AccordingTo

2882 SPE S 60924 Quercus Buttler 2018 Buttler 2018

7378 VAR S <NA> <NA> Buttler 2018 Buttler 2018

9298 SSP S 4685 Quercus robur Buttler 2018 Buttler 2018

HYBRID BEGRUEND EDITSTATUS EuroMed

2882 0 <NA> Buttler 2018 7493f91e-cb63-4aeb-8fd4-1e660d35ee09

7378 0 <NA> Buttler 2018 b1ce8750-dd82-4442-9368-fe812af884ee

9298 0 <NA> Buttler 2018 dfe76b32-b552-4d1d-88e9-a90dc08fde0f

The GermanSL is not included in vegdata to keep the R package small. Instead the reference list will
be automatically downloaded into the tv home directory (see tv.home()) or a temporary folder, if it is not
installed but needed. If you want to use a different list, specify refl=<Name of your list> according to
the directory name in the Turboveg directory Species. Function tax can use the given species name (with
option strict=FALSE also name parts), or 7 letter abbreviation or the TaxonUsageID (called SPECIES NR
in Turboveg) to look for all (partially) matching species names within the reference list.

3

In GermanSL versions 1.1 to 1.3 additional information for every taxon is stored in an extra file (tax.dbf)
which can be used with option detailed = TRUE. Since version 1.4 all information is included in the normal
Turboveg file species.dbf.
tax will give you all matching names by default. If you set option strict=TRUE, only the species with exact
match to the given character string will be returned.
syn will give you all taxon names within the swarm of synonyms. The valid name is marked in column
SYNONYM with FALSE.

tax('Elytrigia repens')$TaxonName

Reference list used: GermanSL 1.5

[1] "Elytrigia repens subsp. arenosa" "Elytrigia repens"

[3] "Elytrigia repens var. caesia" "Elytrigia repens var. littoralis"

[5] "Elytrigia repens var. repens"

syn('Elytrigia repens')

Name swarm of Elytrigia repens :

TaxonUsageID TaxonName SYNONYM EDITSTATUS

71 115 Agropyron repens TRUE Buttler 2018

4088 6541 Agropyron repens subsp. caesium TRUE Buttler 2018

4701 10260 Elymus repens subsp. caesius nom. inval. TRUE Buttler 2018

6571 21639 Elytrigia repens TRUE Buttler 2018

7741 24393 Triticum repens TRUE Buttler 2018

8979 27778 Elymus repens s. str. FALSE Buttler 2018

The reference list contains information about the taxonomic hierarchy which can be used with child or
parent.

child(27, quiet=TRUE)$TaxonName

parent(32)

parent(32, rank = 'FAM')

If you want to learn more about the taxonomic reference list GermanSL for Germany, please look at
Jansen and Dengler [2008].

4.1 Name manipulation

We often need to adapt spelling differences and changes of species names not belonging to species concepts.
Package vegdata contains several service functions to help with that.

taxname.abbr is for standardisation of names, mostly for rank spellings.
taxname.simplify can be used to compare two name vectors of species names regarding ”taxonomic

fuzziness”. Taxon names will differ through time and opportunity. But not all parts of the names are equally
affected. Case endings change much more frequently than the beginning of names, ii and y are exchangeable,
etc. Those name parts and diacritic marks, double consonants, ”th”, and other frequent differences in writing
style will be eliminated.

parse.taxa: parse genus and epitheta from name strings.
taxname.removeAuthors Remove name authors from full scientific name strings.

5 Load data from Turboveg

Care about the taxonomic content of the datasets is crucial for every analysis. Some of these steps can be
automated with an appropriate taxonomic reference. For background and details see [Jansen and Dengler,
2010].

db <- 'taxatest'

Defines the vegetation database name according to the name of the Turboveg database directory name

4

tv.metadata(db)

Metainformation, i.e. information about the kind of available information should always be given for
every database. Since Turboveg does not ask and provide such information, write a simple text file called
metainfo.txt and save it within the database folder. Turboveg does not provide any metadata handling.
Database taxatest is an artificial dataset to show functionalities and necessary steps for taxonomic harmo-
nization.

Let’s have a look at the Turboveg data structure.

getOption('tv_home')

[1] "/tmp/RtmpXmCWT6"

obs <- tv.obs(db)

Adding species names

species <- tax('all', refl=tv.refl(db=db))

obs$TaxonName <- species$TaxonName[match(obs$TaxonUsageID, species$TaxonUsageID)]

head(obs[,c('PlotObservationID','TaxonUsageID','COVER_CODE','LAYER','TaxonName')])

PlotObservationID TaxonUsageID COVER_CODE LAYER

1 2 27 2b 0

2 2 4685 4 1

3 2 4685 1 2

4 2 4685 1 6

5 1 31 3 6

6 1 20096 + 6

TaxonName

1 Achillea millefolium agg.

2 Quercus robur

3 Quercus robur

4 Quercus robur

5 Achillea millefolium

6 Achillea millefolium subsp. collina

This condensed format shows only presences of species observations. Every species observation is stored
in one row and the membership to a specific vegetation plot is given in column RELEVE NR.

5.1 Taxonomic harmonisation - function taxval

Prerequisits for taxonomic harmonisation in vegdata are

1. a taxonomic tree, i.e. a taxon list with parent-child relationships, given in a column called IsChild-
TaxonOfID

2. ordered taxonomic levels, given as a data.frame, see taxlevels with rank abbreviation and numerical
values giving the lowest number for the highest level. The rank abbreviation must correlate to of
column TaxonRank in the taxonomic reference list. Type taxlevels to see the implemented table for
GermanSL.

We are using the taxonomic reference list GermanSL [Jansen and Dengler, 2008], which contains not only
information about synonymy of species names, but also a taxonomic hierarchy. This enables several semi-
automatic enhancements of the taxonomic information stored in your vegetation database. If your database is
not referenced to GermanSL (and can not be converted), you have to care for a column IsChildTaxonOfID and
an appropriate taxlevels data.frame to use function taxval. Otherwise please use option tax=FALSE
in tv.veg) and do the taxonomic harmonization by hand (e.g. with function comb.species).

Dataset taxatest is used to evaluate package code and to show the functionality especially for the tax-
onomic harmonization. We have Achillea species with a subspecies sudetica, a synonym subspecies collina,
two observations on species level (A. atrata and millefolium) and even one on genus level.

5

Field survey Database Analyses

Field

names

Referenced

taxa

Appropriate

taxa

1. Field interpretation

� document your source(s) of taxonomic interpretation (Flora)

� specify determination certainty

� collect herbarium specimen

2. Database entry

� document field records / original literature

� reference as conservative as possible to a taxonomic reference list with all relevant taxa (synonyms,
field aggregates, horticultural plants, ...)

� document your interpretations

3. Preparation for analyses

� standardize taxon name parts (rank abbreviations, genus sex, y versus i etc.)

� convert synonyms

� summarize monotypic taxa

� clean up nested taxa

� clean up taxonomic ranks

� . . .

Three steps of taxonomic interpretation

� need of appropriate tools (software, reference lists)

� standards

� threefold attention

Figure 1: Steps of taxonomic interpretation

6

library(vegdata)

obs <- tv.obs('taxatest')

sort(tax(unique(obs$TaxonUsageID))$TaxonName)

Reference list used: GermanSL 1.5

[1] "Acer pseudoplatanus"

[2] "Acer tataricum"

[3] "Achillea"

[4] "Achillea millefolium"

[5] "Achillea millefolium agg."

[6] "Achillea millefolium subsp. collina"

[7] "Achillea millefolium subsp. sudetica"

[8] "Acoraceae"

[9] "Adonis aestivalis"

[10] "Agrostis stolonifera var. palustris"

[11] "Armeria bottendorfensis"

[12] "Armeria maritima subsp. bottendorfensis"

[13] "Armeria maritima subsp. elongata"

[14] "Armeria maritima subsp. halleri s. l."

[15] "Dactylis glomerata s. str."

[16] "Galium mollugo s. str."

[17] "Hieracium pilosella"

[18] "Hieracium subg. Pilosella"

[19] "Picea abies"

[20] "Quercus robur"

The database contains 20 different names in the beginning.

Synonyms First the number of species names which are synonyms are given. They are transferred to
accepted taxon names, respectively numbers (see option syn=’adapt’). If you want to preserve synonyms,
choose option syn = ’conflict’ or ’preserve’.

Monotypic species within the area Monotypic taxa are valid taxa which are the only child of their next
higher taxonomic rank within the survey area. By default they will be converted by taxval to the higher
rank. For instance Poa trivialis is in Germany only represented by Poa trivialis subspecies trivialis. Both
taxa are valid, but for most analysis only one name for these identical entities must be used. By default a list
of monotypic taxa within the GermanSL (whole Germany) is considered (see tv.mono(’GermanSL 1.5’)).
The default is to set all monotypic species to the higher rank (because many monotypic subspecies can occur
in vegetation databases).
If necessary, the procedure has to be repeated through the taxonomic

Critical Pseudonyms Taxon misapplication is maybe the greatest danger in using survey data. Known
misapplications of names (.auct) are embedded within GermanSL. Please pay attention, if these might also
be relevant for your dataset.
Completely independent from the questions of correct taxonomic naming of a specific specimen, the boundary
of a taxon interpretation can differ much, see Jansen and Dengler [2010]. This should be adequately solved
during data entry. Nevertheless the ”Warning: Critical species” and ”Warning: Potential pseudonyms” give
you a last chance to rethink the correctness of your taxon assignments.

Coarsening to a specific taxonomic level For most analyses it will be necessary to analyse only
one taxonomic level, e.g. not to confuse species numbers per plot, community means etc. For this you
normally have to raise the lower observations to a coarser level. If you want the species level, you can specify
ag=’adapt’ and rank=’SPE’. All hierarchical levels below the species level (including the above specified
monotypic subspecies) are set to species level in this case.

obs.tax <- taxval(obs, db='taxatest', ag='adapt', rank='SPE', check.critical = FALSE, taxlevels = taxlevels, mono = 'pre')

7

Original number of names: 20

5 synonyms found in dataset. Changed to valid names.

Monotypic taxa preserved!

For 2 taxa the taxonomic hierarchy will be adapted.

Number of taxa after harmonisation: 16

sort(tax(unique(obs.tax$TaxonUsageID), db=db)$TaxonName)

Reference list used: GermanSL 1.5

[1] "Acer pseudoplatanus" "Acer tataricum"

[3] "Achillea" "Achillea collina"

[5] "Achillea millefolium" "Achillea millefolium agg."

[7] "Acoraceae" "Adonis aestivalis"

[9] "Agrostis stolonifera" "Armeria maritima s. l."

[11] "Dactylis glomerata s. str." "Galium mollugo s. str."

[13] "Hieracium pilosella" "Hieracium subg. Pilosella"

[15] "Picea abies" "Quercus robur"

The subspecies have been raised to the species level. However, there is still a conflict between the Achillea
millefolium observations and the aggregate. The same for Hieracium pilosella and H. subg. Pilosella. To
solve these issues we can us ag=’conflict’:

obs.tax <- taxval(obs, db='taxatest', ag='conflict', check.critical = FALSE)

Original number of names: 20

5 synonyms found in dataset. Changed to valid names.

1 monotypic taxa found in dataset. Will be set to species rank if possible.

5 conflicting child taxa found in dataset.

[1] "Achillea collina"

[2] "Achillea millefolium"

[3] "Achillea millefolium agg."

[4] "Achillea millefolium subsp. sudetica"

[5] "Hieracium pilosella"

1 conflicting child taxa found in dataset.

[1] "Achillea millefolium"

1 conflicting child taxa found in dataset.

[1] "Achillea millefolium agg."

Number of taxa after harmonisation: 12

sort(tax(unique(obs.tax$TaxonUsageID), db=db)$TaxonName)

Reference list used: GermanSL 1.5

[1] "Acer pseudoplatanus"

[2] "Acer tataricum"

[3] "Achillea"

[4] "Acorus"

[5] "Adonis aestivalis"

[6] "Agrostis stolonifera subsp. stolonifera"

[7] "Armeria maritima subsp. elongata"

[8] "Dactylis glomerata s. str."

[9] "Galium mollugo s. str."

[10] "Hieracium subg. Pilosella"

[11] "Picea abies"

[12] "Quercus robur"

The yarrow taxa are all subsumed to the highest occurring taxon in this taxon tree, i.e. a genus observa-
tion. For the two Armeria species the subspecies level was kept because there is no conflicting higher taxon
in the dataset.

The result might be disappointing, e.g. think of a single coarse determination only on the family level
in a huge dataset. This will lead to raising all species of that family to the family level. This would impede
many analyses and you might want to choose a maximum taxonomic level to remain in the dataset. This
can be done with option ”maxtaxlevel”. If you use interactive=TRUE, you will be able to see the number of

8

occurrences for the different levels in file ”taxvalDecisionTable.csv” which might help to decide which way
to go.

Combining ”maxtaxlevel” and the two options of ”ag” might come closest to what seems scientifically
reasonable in many cases.

obs.tax <- taxval(obs, db='taxatest', ag='conflict', maxtaxlevel = 'AGG', check.critical = FALSE, interactive = TRUE)

obs.tax <- taxval(obs.tax, db='taxatest', ag='adapt', rank='SPE', check.critical = FALSE)

sort(tax(unique(obs.tax$TaxonUsageID), db=db)$TaxonName)

Check ?taxval and args(taxval) for more options.

6 Vegetation data

At the moment there exists no widely accepted formal class for vegetation data in R. But most functions
in vegan, ade4 or other packages expect vegetation data to be stored in a matrix with species in columns
and plots in rows. Therefore, we need to inflate the Turboveg format (where zero occurrences are missing)
to such a matrix.

tv.veg is a wrapper for the above mentioned functions and produces a vegetation matrix with releves as
rows and species as columns. Additionally care about species-plot attribute differentiation and combination,
and the handling of species codes is provided.

6.1 XML

6.2 Performance measures

At least in Europe most vegetation plots have information about the performance of a species within the
survey area, often given in some kind of alphanumeric code for cover percentage within the survey plot.
Different code systems are combined by using the mean cover percentage per cover code class. Function
tv.coverperc will do this job according to the definitions in Turboveg/Popup/tvscale.dbf and the entries in
the header data column COVERSCALE.

obs <- tv.obs(db)

obs <- tv.coverperc(db, obs)

tail(obs)

PlotObservationID TaxonUsageID COVER_CODE LAYER SEASON MICROREL FLOWER

19 1 76 1 6 0 <NA> 0

20 1 10024 1 6 0 <NA> 0

21 2 2923 1 0 0 <NA> 0

22 2 27309 3 6 0 <NA> 0

23 3 12273 1 6 0 Bult 0

24 2 4269 1 1 0 Bult 0

A few simple possibilities for percentage cover transformations are directly included in the tv.veg code,
e.g. to use only presence-absence information you can choose option cover.transform = ’pa’.

6.3 Pseudospecies

How to account for different vegetation layers or other kinds of species differentiation?
The next step is the separation of pseudo-species. ”Pseudo-species” are all kind of taxa split according

to species-plot information beyond the performance measure which will be used within the matrix. At this
point you have to decide which information should be preserved and which should be aggregated. For in-
stance layer separation must be defined at this step. The default is to differentiate tree, shrub and herb
layers but to combine finer layer specifications within them.
If you have more than one occurrence of the same species in a plot, e.g. because tree species growing as
young stands and adult specimens were differentiated according to growth height classes, you have to create
either pseudo-species which differentiate the occurrences in the resulting vegetation matrix or to combine

9

species occurrences from different layers. For the latter you can use different calculations e.g. to sum up all
cover percentages of different layers lc=’sum’ or the maximum value (lc=’max’), mean value (lc=’mean’).
If you assume an independent occurrence of a species in different vertical layers, you can do the calculations
with option lc = ’layer’ (the default). This results in a probability sum: A species covering 50% in tree layer
1 and 50% in herb layer will get a combined cover of 75% because both layers will overlap 50% (1 - 0.5*0.5).

If you want to specify pseudo-species by other species-plot differentiation you can define a combination
dataframe. Two example dataframes are included in the package (lc.0 and lc.1). Option comb has to
be given as a list with first element naming the column name holding the grouping variable and as second
element the name of the combination dataframe. Try

data(lc.0)

obs <- tv.obs(db)

tv.veg(db, pseudo = list(lc.0, c("LAYER")), lc = "layer")

and check the column names:

tmp <- tv.veg(db, tax=FALSE, pseudo = list(lc.0, "LAYER"), lc = "layer", quiet=TRUE)

Reading tvabund.dbf

Taxonomic reference list: GermanSL 1.5

Reading tvhabita.dbf

1 releves without date. Not converted from factor to date format.

converting cover code ...

creating pseudo-species ...

combining occurrences using type LAYER and creating vegetation matrix ...

replacing species numbers with shortletters names ...

names(tmp)

[1] "AGRES-S.6" "HRCM$P.6" "ACERPSE.5" "ACERPSE.6" "ACERTAT.2" "ACERTAT.3" "DCTYGLO.6" "ACHLCOL.6"

[9] "ARMRM-E" "ARMRM-E.1" "ARMRM-E.2" "GALMMOL.6" "ACHLLAG" "ARMRM-E.6" "HRCMPIL" "ACHLMIL.6"

[17] "ACHLM-S.6" "PICEABI.1" "QRCSROB.1" "QRCSROB.2" "QRCSROB.6" "ACHL-SP.6" "#ACRNA.6" "ADNEAES.6"

Separated by dots and layer numbers you can see the preserved layers. For meaning of layer numbers see
Turboveg help.
Check (data(lc.1)) for the default layer combination.

Beside layers you can use any kind of species-plot attributes to distinguish between occurrences, for
instance in a multi-temporal survey.

comb <- list(data.frame(SEASON=0:4, COMB=c(0,'Spring','Summer','Autumn','Winter')),'SEASON')

names(tv.veg(db, tax=FALSE, pseudo=comb, quiet=TRUE))

Reading tvabund.dbf

Taxonomic reference list: GermanSL 1.5

Reading tvhabita.dbf

1 releves without date. Not converted from factor to date format.

converting cover code ...

creating pseudo-species ...

combining occurrences using type LAYER and creating vegetation matrix ...

replacing species numbers with shortletters names ...

[1] "AGRES-S" "HRCM$P" "ACERPSE.Spring" "ACERPSE.Summer" "ACERTAT" "DCTYGLO"

[7] "ACHLCOL" "ARMRM-E" "ARMRM-E.1" "ARMRM-E.2" "GALMMOL" "ACHLLAG"

[13] "ARMRM-E.3" "HRCMPIL" "ACHLMIL" "ACHLM-S" "PICEABI" "QRCSROB"

[19] "ACHL-SP" "#ACRNA" "ADNEAES"

10

data(lc.1)

veg <- tv.veg(db, lc = "sum", pseudo = list(lc.1, 'LAYER'), dec = 1, check.critical = FALSE)

1 releves without date. Not converted from factor to date format.

veg[,1:10]

6.4 Combine species manually

Beside semi-automatic taxon harmonization with function taxval there are two possibilities to change
Taxonomy manually. If you decide to interpret a certain species name in your database different than stored
in the standard view of the taxonomic reference you can replace species numbers within the observational
dataframe and run taxval later on.

obs.tax$TaxonUsageID[obs.tax$TaxonUsageID == 27] <- 31

will replace all occurrences of Achillea millefolium agg. with Achillea millefolium which might be adequate
for your survey and will prevent a too coarse taxon grouping. For a longer list of replacements you can use
a dataframe.

taxon.repl <- data.frame(old=c(27), new=c(31))

obs.tax$TaxonUsageID <- replace(obs.tax$TaxonUsageID,

match(taxon.repl$old, obs.tax$TaxonUsageID), taxon.repl$new)

The second possibility is to use function comb.species on vegetation matrices.

comb.species(veg, sel=c('QUERROB','QUERROB.Tree'))

will use the first name (’QUERROB’) for the replacement column with the cover sums of the selected
columns.

7 Site conditions

Vegetation data should come with information about date, place, plot size as well as overarching properties
of the plant community and site conditions, plot measurements etc. tv.site will load the Turboveg site
(header) data and does some basic checks necessary because of the Turboveg dBase format.

site <- tv.site(db)

1 releves without date. Not converted from factor to date format.

Some columns contain no data and are omitted.

[1] TABLE_NR NR_IN_TAB PROJECT NameAuthor SYNTAXON UTM ALTITUDE EXPOSITION MOSS_IDENT

[10] LICH_IDENT

Some numeric columns contain only 0 values and are omitted.

[1] COV_TOTAL COV_TREES COV_SHRUBS COV_HERBS COV_MOSSES COV_LICHEN COV_ALGAE COV_LITTER COV_WATER

[10] COV_ROCK TREE_HIGH TREE_LOW SHRUB_HIGH SHRUB_LOW HERB_HIGH HERB_LOW HERB_MAX CRYPT_HIGH

[19] EPSG

Some numeric fields contain 0 values:

[1] PRECISION X_COORD Y_COORD L_MEA_B T_MEA_B K_MEA_B

Please check if these are really meant as 0 or if they are erroneously assigned because of DBase restrictions.

If so, use something like:

site$Column name[site$Column name==0] <- NA

11

The function is quite straightforward. After loading the file tvhabita.dbf from the specified database
folder, warnings are given for plots without specified relevé area or date and fields are checked if they are
empty (a lot of predefined header fields in Turboveg are often unused) or contain probably mistakable 0 values
in numerical fields, due to dBase deficiencies (dBase can not handle NA = not available values reliably). It
is stated in the output, if you have to check and possibly correct 0 values.

8 Additional functions

Use help(package=’vegdata’) for a complete list of available functions and data sets in vegdata.

8.1 Frequency tables

syntab produces a relative or absolute frequency table of a classified vegetation table with the possibility
to filter according to threshold values. To exemplify the function we use the second dataset implemented in
the package. It is the demonstration dataset from Leyer and Wesche [2007], a selection of grassland relevés
from the floodplains of the river Elbe.

elbaue <- tv.veg('elbaue', check.critical = FALSE)

elbaue.env <- tv.site('elbaue')

Some columns contain no data and are omitted.

Some numeric columns contain only 0 values and are omitted.

Some numeric fields contain 0 values:

Please check if these are really meant as 0 or if they are erroneously assigned because of DBase restrictions.

If so, use something like:

site$Column name[site$Column name==0] <- NA

clust <- vector('integer', nrow(elbaue.env))

clust[elbaue.env$MGL < -50 & elbaue.env$SDGL < 50] <- 1 # dry sites, low deviation

clust[elbaue.env$MGL < -50 & elbaue.env$SDGL >= 50] <- 2 # dry sites, high deviation

clust[elbaue.env$MGL >= -50 & elbaue.env$SDGL >= 50] <- 3 # wet sites, high deviation

clust[elbaue.env$MGL >= -50 & elbaue.env$SDGL < 50] <- 4 # wet sites, low deviation

#levels(clust) <- c('dry.ld','dry.hd', 'wet.hd','wet.ld')

We can e.g. look at the relative frequency of all species with more than 40% at least in one column,
according to the height of the groundwater table (low or high) and the amplitude of the groundwater table
fluctuations (high or low deviations from the mean). Additionally you can use the affiliation of species to
abiotic clusters with the help of package indicspecies, which calculates species indicator values for one or
several cluster [De Cáceres et al., 2010] to order the syntaxonical table. Together with Ellenberg indicator
values with will get a comprehensive view into our data.

synt <- syntab(elbaue, clust, mupa = TRUE)

Number of clusters: 4

Cluster frequency 7 10 5 11

9 Vegetation analyses

The package vegdata serves mostly as a helper for the analysis of vegetation data. Several powerful R
packages like vegan and others exist, to provide a very broad range of possibilities.

9.1 Multivariate Ordinations

With the functions shown above we are now ready to do some example analyses in the wide area of vegetation
analyses.

12

We can do, for instance, a “Nonmetric Multidimensional Scaling with Stable Solution from Random Starts
Axis Scaling and Species Scores” which is a wrapper for Kruskal’s Non-metric Multidimensional Scaling [Cox
and Cox, 1994, 2001] from Jari Oksanen [Oksanen et al., 2008].

Data analyses

if (requireNamespace('vegan', quietly = TRUE)) {
library(vegan)

veg.nmds <- metaMDS(elbaue, distance = "bray", trymax = 5, autotransform =FALSE,

noshare = 1, expand = TRUE, trace = 2)

eco <- tv.traits()

F <- cwm(veg = elbaue, trait.db = 'ecodbase.dbf', ivname = 'OEK_F', method = 'mean')

N <- cwm(veg = elbaue, trait.db = 'ecodbase.dbf', ivname = 'OEK_N', method = 'mean')

env <- envfit(veg.nmds, env = data.frame(F, N))

} else

message("package vegan not available")

Loading required package: permute

Loading required package: lattice

This is vegan 2.6-8

To show the result in comparison with environmental measurements in a nice graphic we do some plotting
magic.

The first axis of our NMDS plot show the influence of mean groundwater level on the patterns of the
dataset. Glyceria maxima is marking the wet side of the gradient, whereas Cnidium dubium Agrostis capil-
laris or Galium verum agg, occur only at low mean groundwater level. The second axis can be assigned to
the fluctuation of water levels measured as standard deviation of mean groundwater level. Species indicating
high water fluctuation are Agrostis stolonifera or Alopecurus geniculatus whereas Carex vesicaria occurs only
in more balanced situations.

13

if (requireNamespace('interp', quietly = TRUE) & requireNamespace('labdsv', quietly = TRUE) & requireNamespace('vegan', quietly = TRUE)) {
suppressPackageStartupMessages(library(labdsv))

library(interp)

color = function(x)rev(topo.colors(x))

nmds.plot <- function(ordi, site, var1, var2, disp, plottitle = 'NMDS', env = NULL, ...) {
lplot <- nrow(ordi$points); lspc <- nrow(ordi$species)

filled.contour(interp(ordi$points[, 1], ordi$points[, 2], site[, var1], duplicate = 'strip'),

ylim = c(-1, 1.1), xlim = c(-1.4, 1.4),

color.palette = color, xlab = var1, ylab = var2, main = plottitle,

key.title = title(main = var1, cex.main = 0.8, line = 1, xpd = NA),

plot.axes = { axis(1); axis(2)

points(ordi$points[, 1], ordi$points[, 2], xlab = "", ylab = "", cex= .5, col = 2, pch = '+')

points(ordi$species[, 1], ordi$species[, 2], xlab = "", ylab = "", cex=.2, pch = 19)

ordisurf(ordi, site[, var2], col = 'black', choices = c(1, 2), add = TRUE)

orditorp(ordi, display = disp, pch = " ")

legend("topright", paste("GAM of ", var2), col = 'black', lty = 1)

if(!is.null(env)) plot(env, col='red')

}
,...)

}

nmds.plot(veg.nmds, elbaue.env, disp='species', var1="MGL", var2="SDGL", env=env, plottitle = 'Elbaue floodplain dataset')

} else {
message("packages interp and/or labdsv not available")

}

−250

−200

−150

−100

−50

0

MGL

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

 30

 35

 40
 45

 50

 55

 60

 65

 70

GLYCMAX

GLYCFLU

RRPPAMP

AGRESTO

CARXVES

ALPCGEN

ANTSODO

VICILAT

PLNRULI

ACERPSE

AGRECAN

AGRECAP

EPHRESU

RUMXTHY

CARXTCU

CARXPAG

PTNTREP
ALPCPRA

GALMUAG

POA PAL

POA AAG

VICITET

RUMXACE

SIUMLAT

PHLRARU

FSTC#S

GALMTAG

RRPPSYL

HLCSLAN

POA TRI
TRXCTES

CRDMPRA

RNNCPEP

JNCSEFF

SYMPFAG

TRFLREP

LOTSCOR

GAM of SDGL

F

N

Elbaue floodplain dataset

MGL

S
D

G
L

Figure 2: Non-metric multidimensional scaling of the elbaue vegetation data with an overlay of mean ground-
water table (colors) and standard deviation of groundwater level fluctuations (GAM lines). Arrows show
direction of increasing mean Ellenberg F (soil water) resp. N (nutrient availability).

14

References

Stephan M. Hennekens and Johannes Hendrikus Jacques Schaminee. Turboveg, a comprehensive data base
management system for vegetation datasoftware package for input, processing, and presentation of phy-
tosociological data. Journal of Vegetation Science, 12:589–591, 2001.

Florian Jansen and Juergen Dengler. Plant names in vegetation databases - a neglected source of bias.
Journal of Vegetation Science, 21(6):1179–1186, Aug 2010. doi: 10.1111/j.1654-1103.2010.01209.x. URL
http://doi.wiley.com/10.1111/j.1654-1103.2010.01209.x.

Jürgen Dengler, Florian Jansen, Falko Glöckler, R.K. Peet, Miquel De Cáceres, M. Chytrý, Jörg Ewald,
Jens Oldeland, G. Lopez-Gonzalez, Manfred Finckh, and Others. The Global Index of Vegetation-Plot
Databases (GIVD): a new resource for vegetation science. Journal of Vegetation Science, 22(4):582–597,
2011. doi: 10.1111/j.1654-1103.2011.01265.x. URL http://onlinelibrary.wiley.com/doi/10.1111/j.

1654-1103.2011.01265.x/full.

Florian Jansen and Juergen Dengler. Germansl - eine universelle taxonomische referenzliste fuer vegetations-
datenbanken. Tuexenia, 28:239–253, 2008.

Ilona Leyer and Karsten Wesche. Multivariate Statistik in der Oekologie. Springer, Berlin, 2007.

Miquel De Cáceres, Pierre Legendre, and Marco Moretti. Improving indicator species analysis by combining
groups of sites. Oikos, 119(10):1674–1684, October 2010. ISSN 00301299. doi: 10.1111/j.1600-0706.2010.
18334.x. URL http://doi.wiley.com/10.1111/j.1600-0706.2010.18334.x.

T. F. Cox and M. A. A. Cox. Multidimensional Scaling. Chapman & Hall, 1994, 2001.

Jari Oksanen, Roeland Kindt, Pierre Legendre, Bob O’Hara, Gavin L. Simpson, and M. Henry H. Stevens. ve-
gan: Community Ecology Package, 2008. URL https://cran.r-project.org/,http://vegan.r-forge.

r-project.org/.

15

http://doi.wiley.com/10.1111/j.1654-1103.2010.01209.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1654-1103.2011.01265.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1654-1103.2011.01265.x/full
http://doi.wiley.com/10.1111/j.1600-0706.2010.18334.x
https://cran.r-project.org/, http://vegan.r-forge.r-project.org/
https://cran.r-project.org/, http://vegan.r-forge.r-project.org/

	Preliminary notes
	Provided functionality
	Taxonomic harmonisation
	Database access
	Cover standardization
	Layer aggregation
	Vegetation matrix

	Preparations
	Service functions
	Name manipulation

	Load data from Turboveg
	Taxonomic harmonisation - function taxval

	Vegetation data
	XML
	Performance measures
	Pseudospecies
	Combine species manually

	Site conditions
	Additional functions
	Frequency tables

	Vegetation analyses
	Multivariate Ordinations

